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The collision of plane jets of an ideal incompressible fluid has been examined in de- 
tail in a number of investigations [i-4]. Figure i shows the resulting flow configuration 
in the coordinate system connected with the contact point, where OC and OD are jets col- 
liding at the angle u = Y1 + Y2; OA and OB represent the main flow, directed parallel to the 
Ox axis, and the reverse jet, making the angle X with the Ox axis; O is the contact point. 
The interest in this problem stems from the fact that such a simple model satisfactorily de- 
scribes the high-velocity oblique collision of metal plates, especially the formation of the 
reverse jet and the wave formation at the collision boundary of the plates. Meanwhile, the 
main parameters of the reverse jet are in good agreement with the results of calculations 
performed within the framework of an ideal incompressible fluid [i, 2]. 

Wave formation at the collision boundary of plates was discovered relatively recently 
[5]. The details of this phenomenon and many of the concepts advanced to explain it were 
examined in [6, 7]. In [8, 9], the opinion was ventured that the generation of waves is due 
to instability of the flow beyond the contact point. It was shown in [10-12] on the basis 
of both quantitative and qualitative estimates that the main laws of the wave generation pro- 
cess can be deduced by this approach. The stability of the symmetrical collision of jets was 
studied in [13] with allowance for the two-dimensional nature of the initial flow. It was 
shown that the jet configuration is unstable against symmetrical potential perturbations and 
stable against antisymmetrical perturbations. It was concluded on the basis of this that the 
waves seen in the high-velocity oblique collision of metal plates are vortical in nature. 

The collision of jets of arbitrary thickness has yet to be analyzed with regard to sta- 
bility. Yet this problem is quite important, especially in light of the indeterminate nature 
of the problem of the collision of plane jets of an ideal incompressible fluid. For example, 
conservation laws do not permit the determination of the angle X, which specifies the direc- 
tion of the reverse jet. Thus, an investigation of stability is needed to determine stable 
jet configurations, should such configurations exist in general. The solution of this prob- 
lem is the goal of the present investigation. 

Formulation of the Problem. We assume that the flow which develops in the collision of 
plane jets of an ideal incompressible fluid is a potential flow. Then the solution describ- 
ing the collision of two flows of the thickness h i and h 2 having equal velocities at infinity 
has the form [3] 

aw = ln ( i  + v/al) + h+ In (i  + v/a.+) - -  k 1 In (i  + v) - -  k+ In (i  - -  v/a+), ( 1 )  

w h e r e  v = v x -  i v y  a n d  w = T +  i +  a r e  t h e  c o m p l e x  v e l o c i t y  a n d  p o t e n t i a l  o f  t h e  f l o w ;  k l  a n d  k2 
a r e  t h e  t h i c k n e s s + s  o f  t h e  m a i n  f l o w  a n d  t h e  r e v e r s e  j e t ;  am = e - ~ + z ;  am = e i 7 2 ;  a 3  = e - i ~ "  
A l l  o f  t h e  q u a n t i t i e s  a r e  d i m e n s i o n l e s s .  As t h e  u n i t s  o f  v e l o c i t y  a n d  l e n g t h ,  we r e s p e c t i v e -  
l y  c h o s e  t h e  v e l o c i t y  o f  t h e  c o l l i d i n g  f l o w s  a t  i n f i n i t y  a n d  t h e  t h i c k n e s s  h i .  The  d e n s i t i e s  
o f  t h e  j e t s  w e r e  a s s u m e d  t o  be  i d e n t i c a l .  

To d e t e r m i n e  t h e  f o u r  u n k n o w n s  - k l ,  k 2 ,  X, a n d  Y1 o r  72 ( t h e  t o t a l  c o l l i s i o n  a n g l e  u i s  
g i v e n ) ,  we h a v e  t h r e e  e q u a t i o n s  w h i c h  f o l l o w  f r o m  t h e  m a s s  a n d  momentum c o n s e r v a t i o n  l a w s .  
T h u s ,  s o l u t i o n  ( 1 )  h a s  o n e  i n d e t e r m i n a t e  p a r a m e t e r .  I t  i s  c o n v e n i e n t  t o  c h o o s e  t h e  a n g l e  X 
a s  t h i s  p a r a m e t e r ,  i n  w h i c h  c a s e  

k 1 = i ~ h 2 - -  k2, k~ = [i  - -  cos Y1 + h~(l - -  cos 72)]I(i + cos %), ( 2 )  

while the connection between the angles 7z and 72 is found from the equation 

Chernogolovka. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 6, pp. 102-107, November-December, 1988. Original article submitted September 22, 1987. 

860 0021-8944/88/2906-0860512.50 �9 1989 Plenum Publishing Corporation 



-- 111 B 

A .... - Z 

@ 

Fig. 1 Fig. 2 

( i  - -  cos ? t  + h~(i - -  cos 72)) tg % = h~ sin ?~ - -  s in  ?~, ( 3 )  

i.e., all of the constants in Eq. (i) are assumed to be known. 

We will use the method in [14, 15] to analyze the stability of the jet configuration. 
We assumed that, as the main flow, the disturbed flow is also a potential flow. The complex 
potential of small perturbations will be designated as w + w z. Two conditions must be sat- 
isfied on the free surface: i) pressure is equal to zero (dynamic condition); 2) particles 
originally located on the free surface remain on it at subsequent moments of time (kinematic 
condition). It is convenient to subsequently perform the study in the plane of complex velo- 
city v. The flow shown in Fig. 1 is reflected on the interior of a circle of the radius 1 
(Fig. 2) [3]. The conditions on the free surface, which correspond to the circle vv* = 1 
(the asterisk denoting the operation of complex conjugation), lead to an equation for w z [15]: 

dw aw~ 
I m { D [ w l - - v f g D [ w l ] ] - -  at j = O '  (4) 

where D is the differential operator 8/3w + 8/8t; t is dimensionless time. Designating the 
expression in braces as H(v) and considering v to be the independent variable, we obtain 

H(u) : (H(u))* at yO r = ~. 

Expansion of Eq. (4) gives us the boundary condition for thepotential ~i, which was 
studied in [16] for several problems. Here, we analyze Eq. (5) directly. 

We seek the dependence of the solution on time in the form [15] 

(5) 

W 1 = G 1 (u)  e ~ t  + G~ (v )  e '~*t. ( 6 )  

The allowable values of ~ and the corresponding functions G z and G 2 are found from (5). The 
general solution can be represented as the sum of functions of the form (6). Perturbations 
for which Re {m} > 0 will be unstable. After insertion of (6) into (5), the conditions on 
the free surface lead to the equation 

I,~, IG~ (t,)l = (L,~, [G~ (~')l)*, ( 7 )  

where 

= ____ 9 da [dQ ~ ) ~ Z'o + .(or 7Y + o) ~-gV ~ + (o~ G, Lo, [G] ~ dv ~ 

( A, ~' 5] 
.~ v -1- a 1 v -'r- a 2 v -~- i ~ 

(8) 

If the flow is symmetrical relative to the Ox axis, then it is easy to establish a 
connection between the functions G 1 and G 2 [15]. This makes it possible to obtain the bound- 
ary condition for one function Gz, which was studied in [13] (for example) in an analysis of 
the stability of a symmetrical jet configuration. This method cannot be used in the case of 
colliding flows of arbitrary thickness. We therefore examine a special case of Eq. (7), to 
wit: let 

L s  [Gl(U ) ] = Co'~ (9) 

L,o, [G~ (~)1 = Co (10) 
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(C o is a real constant). Equations (9) and (i0) must be satisfied with vv* = i. Using the 
property of analytic continuation, we assume that these equations are valid over the entire 
plane v. Thus, the problem is reduced to finding the functions Gl(v) and G2(v) which satis- 
fy 4nhomogenous second-order differential equations (9) and (i0). In all subsequent rela- 
tions, m is encountered in the form of the combination ~/~. For brevity, this will be desig- 
nated simply as w. 

Let us study Eqs. (9) and (i0), which are inhomogeneous linear second-order differential 
equations of the Fuchs type [17] with regular singular points 0, -i, -al, -a2, -a 3 and ~. If 
K (I) and K(2)are two linearly independent solutions of the corresponding homogeneous equa- 
tion, then the general solution has the form [17] 

v v 

G, (u) = A1K(O + B,K e) + K (~) ~ K(')P du - -  K (1) [ - K(2)P .) T dr, (11)  .) 
0 0 

where P = C0fl/v2; W(v) is a Wronskian which can be found from the differential equation and 
is equal to 

W (0) (t + ~2~hl (t -- ~)e~h~(l + v/a2) -2~h2 (1 + ~al) -2~. 

The f u n c t i o n  G2(v) w i l l  o b v i o u s l y  be g i v e n  by Eq. (11)  i f  we r e p l a c e  ~ by ~* and A1 and B1 
by A2 and B2. The s o l u t i o n  o f  (1 )  s a t i s f i e s  t h e  n e c e s s a r y  c o n d i t i o n s  e v e r y w h e r e  on t h e  f r e e  
s u r f a c e  e x c e p t  f o r  t h e  s i n g u l a r  p o i n t s .  I n  t h e  n e i g h b o r h o o d  o f  t h e  s i n g u l a r  p o i n t s ,  t h e  
b e h a v i o r  o f  t h e  f u n c t i o n s  G1 and G 2 s h o u l d  s a t i s f y  c e r t a i n  p h y s i c a l  r e q u i r e m e n t s .  

We w i l l  s t u d y  t h e  s o l u t i o n  a t  v + - I .  I n  t h e  z p l a n e ,  t h i s  c o r r e s p o n d s  t o  mo t ion  down- 
s t r e a m  in  t h e  main f l o w ,  where  t h e  j e t  a s y m p t o t i c a l l y  becomes a s t r a i g h t  l i n e .  Here ,  v e l o c -  
i t y  i s  c o n s t a n t .  I t  i s  known [18]  t h a t  such  a f l ow i s  n e u t r a l l y  s t a b l e  and t h a t  any p e r -  
t u r b a t i o n  i s  p r o p a g a t e d  w i t h o u t  a downs t ream change  in  t h e  v e l o c i t y  o f  t h e  j e t .  Th i s  f a c t  
can be e x p r e s s e d  m a t h e m a t i c a l l y  by e q u a t i n g  t h e  t o t a l  d e r i v a t i v e  o f  p e r t u r b a t i o n  r a t e  w i t h  
r e s p e c t  t o  t ime  t o  z e r o .  Th i s  l e a d s  t o  t h e  r e q u i r e m e n t  o f  t h e  e x i s t e n c e  o f  t h e  l i m i t s  

lim (v + J ) -~ lGland  lim (v + t)-~*hG~. 
V~--I v~--I 

Let us analyze the function G z. The two linearly independent solutions of homogeneous equa- 

tion (9) K (I) and K (2) in the neighborhood of the point -i behave as (v + i) ~kI~I and (v + 

i) ~kl - ~k1(v + i) mk1+1 in (v +1), i.e., the necessary conditions are satisfied automati- 
cally. Studying the particular solution of the inhomogenous equation, we find that the 
boundary conditions are satisfied if 

~e {~} < l/~ 1, (12)  

We o b t a i n  t h e  same i n e q u a l i t y  f o r  G 2 . The r e s t r i c t i o n  on t h e  s o l u t i o n  in  t h e  n e i g h b o r h o o d  o f  
t h e  s i n g u l a r  p o i n t  v = a s i s  found  in  a s i m i l a r  manner ( w i t h  t h e  r e p l a c e m e n t  o f  k z by k 2 ) .  
However,  i t  can  be assumed t h a t  k 2 g k 1, and no a d d i t i o n a l  r e s t r i c t i o n s  a r e  imposed on w. 

At v ~ - a  z and v § - a 2 ,  t h e  f u n c t i o n s  G 1 and G 2 s h o u l d  v a n i s h ,  s i n c e  t h e  c o l l i d i n g  j e t s  
a r e  n o t  d i s t u r b e d  a t  i n f i n i t y .  Le t  us s t u d y  G x. The s o l u t i o n s  o f  homogenous e q u a t i o n  (9)  
have  t h e  f o l l o w i n g  a s y m p t o t e  a t  v + - a  1 

K(i)~ ~li (u + al) -o+l  + ~li[(u + al)-'~ + ~a~ (u + gl)-~+lln (u + al) ]. (13)  

Here ,  a l i  and f i l i  ( i  = 1 .2 )  a r e  known c o n s t a n t s  - f u n c t i o n s  o f a l , a  2 , a  s, and m. 

The character of the behavior of the particular solution at v § -a I depends on ~. We 
are interested in solutions with a positive real part m. However, when Re {~} > 0, the inte- 
grals in (Ii) converge at v § -a I. We will designate their values through CoJ11 and CoJ12. 
In this case. obviously, the asymptote of the particular solution will be the same as with 
K (I) and K (2). This means that in order for the function G I to vanish at v + -a I and Re {m} > 
0, it is necessary to equate the coefficient with (v +a~) -~ in (ii) to zero. This leads 
to the equality 

~nA~ ~- ~ B ~  + ( ~ J u  - -  ~nJ~)Co - 0, (14)  

which  l i n k s  t h e  c o n s t a n t s  Az, B1, Co. We s t u d y  t h e  s i n g u l a r  p o i n t  - ~  in  a s i m i l a r  manner .  
The f u n c t i o n  Gz a p p r o a c h e s  z e r o  a t  v + - %  and Re {m} > 0 i f  t h e  f o l l o w i n g  e q u a l i t y  i s  
satisfied 
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~13A1 + ~1~1 + (~J~3 -- ~ ,d . )C0 = 0, ( i 5 )  

where  613 and 614 a r e  c o n s t a n t s  o f  t h e  e x p a n s i o n  o f  K (1 )  and K (2 )  i n  t h e  n e i g h b o r h o o d  o f  
- a 2 ,  a n a l o g o u s  t o  611 and ~z2 [ t h i s  e x p a n s i o n  d i f f e r s  f r o m  (13)  by t h e  r e p l a c e m e n t  o f  a 1 by 
a 2 and ~ by ~ h 2 ] ;  J l a  and J14 a r e  v a l u e s  o f  t h e  i n t e g r a l s  in  (11)  w i t h  v = - a  2 . 

We a l s o  f i n d  two e q u a t i o n s  f o r  t h e  f u n c t i o n s  G2: t h e  f i r s t  f o l l o w s  f rom t h e  r e q u i r e -  
ment  t h a t  G2 v a n i s h  a t  v § - - a l ,  w h i l e  t h e  s e c o n d  f o l l o w s  f rom t h e  r e q u i r e m e n t  t h a t  G2 v a n i s h  
at v § --a 2 : 

~21A 2 § ~22B 2 § (~22J21 - -  ~1J2.2)Co - -  0; (16)  

~2~A2 § ~24B2 § (~2J23 - -  ~ 2 J ~ ) C o  = 0. (17)  

The c o n s t a n t s  ~2i  and J 2 i  ( i  = 1, 4) h a v e  t h e  same s i g n i f i c a n c e  as  t h e  c o r r e s p o n d i n g  q u a n t i -  
t i e s  i n  (14)  and ( 1 5 ) ,  d i f f e r i n g  o n l y  in  t h e  f a c t  t h a t  t h e y  depend  on mm r a t h e r  t h a n  w. 

We o b t a i n e d  two s y s t e m s  ( 1 4 ) - ( 1 5 )  and ( 1 6 ) - ( 1 7 )  t o  d e t e r m i n e  Az, Bz and A2, B2 t h r o u g h  
Co ( t h e  c o n s t a n t  Co r e m a i n s  a r b i t r a r y  and i s  found  f rom t h e  i n i t i a l  c o n d i t i o n s ) .  T h e s e  s y s -  
t ems  h a v e  a u n i q u e  s o l u t i o n  when t h e i r  d e t e r m i n a n t  i s  n o n t r i v i a l .  For  e x a m p l e ,  i f  t h e  d e t e r -  
m i n a n t  o f  t h e  f i r s t  s y s t e m  i s  e q u a l  t o  z e r o ,  t h e n  a s s u m i n g  t h a t  Co = 0 and Gz ~ 0,  we w i l l  
h a v e  one  e q u a t i o n  l i n k i n g  Az and B~, i . e . ,  a l l  o f  t h e  b o u n d a r y  c o n d i t i o n s  can  be s a t i s f i e d  
by c h o o s i n g  t h e  g e n e r a l  s o l u t i o n  o f  homogeneous  e q u a t i o n  (9 )  as  t h e  g e n e r a l  s o l u t i o n  and 
a s s u m i n g  t h a t  Wl = Gze mr.  We p r o c e e d  in  t h e  same manner  i f  t h e  d e t e r m i n a n t  o f  t h e  s e c o n d  
s y s t e m  i s  e q u a l  t o  z e r o .  Then wz = G2e ~ * t .  I f  b o t h  d e t e r m i n a n t s  a r e  s i m u l t a n e o u s l y  e q u a l  t o  
z e r o ,  t h e n  G1 emt and G2e ~mt a r e  t h e  s o l u t i o n s  o f  t h e  p r o b l e m .  I n  any  c a s e ,  i t  t u r n s  o u t  t o  
be  p o s s i b l e  t o  e q u a t e  t h e  c o e f f i c i e n t s  w i t h  t h e  d i v e r g e n t  t e r m s  (v  + a 1) -w and ( v  + a 2 ) - m h 2  
to zero when Re{w} > 0. Taking (12) into account, we finally obtain the following result: 
the jet configuration is unstable against small potential perturbations; the boundary condi- 
tions are satisfied with positive values of the real part ~, which lies within the interval 

0 < Re{~} < t / h .  (18)  

The symmetrical collision of flows was studied in detail with regard to stability in 
[13]. It was shown there that the random configuration is unstable against symmetrical per- 
turbations. Meanwhile, an inequality that coincides with (18) was found for the real part of ~. 
Thus, the perturbations in relation to which the arbitrary jet configuration is unstable be- 

come symmetrical at h 2 = 1 and X = 0. 

Equations (9) and (i0) are readily solved in finite form at ~ = 0. The resulting func- 
tion w I satisfies all boundary conditions. Thus, w = 0 is the eigenvalue of the problem. 

In the above study of the stability of a jet configuration, we assumed that the dis- 
turbed flow is a potential flow. The class of allowable perturbations is severaly limited. 
However, even relative to this limited class, the problem of the collision of jets of arbi- 
trary thickness is unstable. It would be correct to use approaches in which it is assumed 
that waves are formed at the collision boundary between metals as a result of instability of 
the flow beyond the contact point (see, e.g., [10-12]). 

Another consequence of the hydrodynamic stability which occurs is decay of the reverse 
jet. The basis for this conclusion is the well-known empirical fact that stable reverse jets 
are not seen in the wave-formation regime. Instead, a cloud of atomized particles is ob- 
served [6, 7]. Since waves develop in the main flow due to instability of the initial flow, 
it is natural to expect that the occurrence of this instability in the reverse jet will lead 
to its disintegration. 

Finally, as already noted, the problem of the collision of jets in the general case is 
indeterminate. The author of [4] formulated several factors which if taken into considera- 
tion could either eliminate or restrict this indeterminateness. In particular, it was indi- 
cated that it is necessary to determine the stable jet configurations. The results obtained 
in the present study show that such configurations do not exist. It is interesting to note 
that, in accordance with (18), the real part of m takes on minimal positive values when the 
thickness of the main flow is maximal. Using Eqs. (2) and (3), we can show that k I reaches 
a maximum at X = 0. It was this condition, obtained from completely different considera- 
tions, that was proposed in [19] to close system (2)-(3). Practical interest in the problem 
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continues to stimulate searches for a closing relation. Two examples of this, different 
from [19], can be found in [20, 21]. The author of [20] examined the position of the cen- 
ters of inertia of fluid particles in colliding and diverging flows and obtained the con- 
dition YI = u + X (to use the notation employed in the present study). In [21], the fol- 
lowing hypothesis was formulated on the basis of analysis of empirical data: it is possible 
to realize a configuration in which the zero streamline in the outgoing jets has minimal 
curvature. No single configuration has an advantage over another from the viewpoint of 
stability, however, since all configurations are unstable within the framework of an ideal 
incompressible fluid. 
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